3.149 \(\int \frac{x (a+b \sinh ^{-1}(c x))}{\sqrt{d+c^2 d x^2}} \, dx\)

Optimal. Leaf size=64 \[ \frac{\sqrt{c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )}{c^2 d}-\frac{b x \sqrt{c^2 x^2+1}}{c \sqrt{c^2 d x^2+d}} \]

[Out]

-((b*x*Sqrt[1 + c^2*x^2])/(c*Sqrt[d + c^2*d*x^2])) + (Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]))/(c^2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0609169, antiderivative size = 64, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.083, Rules used = {5717, 8} \[ \frac{\sqrt{c^2 d x^2+d} \left (a+b \sinh ^{-1}(c x)\right )}{c^2 d}-\frac{b x \sqrt{c^2 x^2+1}}{c \sqrt{c^2 d x^2+d}} \]

Antiderivative was successfully verified.

[In]

Int[(x*(a + b*ArcSinh[c*x]))/Sqrt[d + c^2*d*x^2],x]

[Out]

-((b*x*Sqrt[1 + c^2*x^2])/(c*Sqrt[d + c^2*d*x^2])) + (Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]))/(c^2*d)

Rule 5717

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x^2)
^(p + 1)*(a + b*ArcSinh[c*x])^n)/(2*e*(p + 1)), x] - Dist[(b*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(2*c*(p +
 1)*(1 + c^2*x^2)^FracPart[p]), Int[(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x] /; FreeQ[{a,
b, c, d, e, p}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && NeQ[p, -1]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \frac{x \left (a+b \sinh ^{-1}(c x)\right )}{\sqrt{d+c^2 d x^2}} \, dx &=\frac{\sqrt{d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )}{c^2 d}-\frac{\left (b \sqrt{1+c^2 x^2}\right ) \int 1 \, dx}{c \sqrt{d+c^2 d x^2}}\\ &=-\frac{b x \sqrt{1+c^2 x^2}}{c \sqrt{d+c^2 d x^2}}+\frac{\sqrt{d+c^2 d x^2} \left (a+b \sinh ^{-1}(c x)\right )}{c^2 d}\\ \end{align*}

Mathematica [A]  time = 0.102264, size = 74, normalized size = 1.16 \[ \frac{\sqrt{c^2 d x^2+d} \left (a \sqrt{c^2 x^2+1}+b \sqrt{c^2 x^2+1} \sinh ^{-1}(c x)-b c x\right )}{c^2 d \sqrt{c^2 x^2+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*(a + b*ArcSinh[c*x]))/Sqrt[d + c^2*d*x^2],x]

[Out]

(Sqrt[d + c^2*d*x^2]*(-(b*c*x) + a*Sqrt[1 + c^2*x^2] + b*Sqrt[1 + c^2*x^2]*ArcSinh[c*x]))/(c^2*d*Sqrt[1 + c^2*
x^2])

________________________________________________________________________________________

Maple [B]  time = 0.086, size = 148, normalized size = 2.3 \begin{align*}{\frac{a}{{c}^{2}d}\sqrt{{c}^{2}d{x}^{2}+d}}+b \left ({\frac{-1+{\it Arcsinh} \left ( cx \right ) }{2\,{c}^{2}d \left ({c}^{2}{x}^{2}+1 \right ) }\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) } \left ({c}^{2}{x}^{2}+cx\sqrt{{c}^{2}{x}^{2}+1}+1 \right ) }+{\frac{1+{\it Arcsinh} \left ( cx \right ) }{2\,{c}^{2}d \left ({c}^{2}{x}^{2}+1 \right ) }\sqrt{d \left ({c}^{2}{x}^{2}+1 \right ) } \left ({c}^{2}{x}^{2}-cx\sqrt{{c}^{2}{x}^{2}+1}+1 \right ) } \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+b*arcsinh(c*x))/(c^2*d*x^2+d)^(1/2),x)

[Out]

a/c^2/d*(c^2*d*x^2+d)^(1/2)+b*(1/2*(d*(c^2*x^2+1))^(1/2)*(c^2*x^2+c*x*(c^2*x^2+1)^(1/2)+1)*(-1+arcsinh(c*x))/c
^2/d/(c^2*x^2+1)+1/2*(d*(c^2*x^2+1))^(1/2)*(c^2*x^2-c*x*(c^2*x^2+1)^(1/2)+1)*(1+arcsinh(c*x))/c^2/d/(c^2*x^2+1
))

________________________________________________________________________________________

Maxima [A]  time = 1.14788, size = 74, normalized size = 1.16 \begin{align*} -\frac{b x}{c \sqrt{d}} + \frac{\sqrt{c^{2} d x^{2} + d} b \operatorname{arsinh}\left (c x\right )}{c^{2} d} + \frac{\sqrt{c^{2} d x^{2} + d} a}{c^{2} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsinh(c*x))/(c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

-b*x/(c*sqrt(d)) + sqrt(c^2*d*x^2 + d)*b*arcsinh(c*x)/(c^2*d) + sqrt(c^2*d*x^2 + d)*a/(c^2*d)

________________________________________________________________________________________

Fricas [A]  time = 2.39403, size = 205, normalized size = 3.2 \begin{align*} \frac{{\left (b c^{2} x^{2} + b\right )} \sqrt{c^{2} d x^{2} + d} \log \left (c x + \sqrt{c^{2} x^{2} + 1}\right ) +{\left (a c^{2} x^{2} - \sqrt{c^{2} x^{2} + 1} b c x + a\right )} \sqrt{c^{2} d x^{2} + d}}{c^{4} d x^{2} + c^{2} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsinh(c*x))/(c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

((b*c^2*x^2 + b)*sqrt(c^2*d*x^2 + d)*log(c*x + sqrt(c^2*x^2 + 1)) + (a*c^2*x^2 - sqrt(c^2*x^2 + 1)*b*c*x + a)*
sqrt(c^2*d*x^2 + d))/(c^4*d*x^2 + c^2*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x \left (a + b \operatorname{asinh}{\left (c x \right )}\right )}{\sqrt{d \left (c^{2} x^{2} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*asinh(c*x))/(c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(x*(a + b*asinh(c*x))/sqrt(d*(c**2*x**2 + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \operatorname{arsinh}\left (c x\right ) + a\right )} x}{\sqrt{c^{2} d x^{2} + d}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsinh(c*x))/(c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsinh(c*x) + a)*x/sqrt(c^2*d*x^2 + d), x)